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VIBRATIONAL DISPLACEMENT IN A GRAVITY FIELD

UDC 534.014S. A. Gerasimov

Vertical vibrational motion in a resistant medium in a gravity field is considered. Critical parameters
for the motion regime in which the center of gravity of the system does not change its position with
respect to the Earth surface are found.
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Introduction. Horizontal vibrational motion in a liquid was examined in [1, 2]; yet, the most interesting and
general case of such a motion, the motion in a gravity field, remained unaddressed [3, 4]. So far, vibrational motion
with resistance quadratic in velocity has been treated [3]. For very high oscillating frequencies of the unbalanced
working body, the platform velocity relative to the medium can be substantial, which implies that a quadratic
dependence of resistance on velocity. The reason why the model of [3] turned out to be incorrect consists in the
physical meaning of the internal force that gives rise to vibrational motion. Nagaev and Tamm [3] put forward
an explosion mechanism for excitation of unbalanced body oscillations; this mechanism involves a force, which is a
sum of delta-functions shifted with respect to each other by the oscillation period. The model of [3] ignores recoil
effects; hence, such a force cannot act as a periodic internal force. The integral of any periodic internal force over
the oscillation period should be zero. The opposite statement would contradict not only the condition of periodic
motion but also the law of conservation of momentum. Anyway, the study of vibrational motion in a gravity field
due to a harmonic internal force seems to be of obvious interest.

Vibrational Motion in a Gravity Field. The presence of a medium resistant to motion in the direct
and reverse directions is a necessary yet insufficient condition for vibrational displacement [4]. We assume that the
resistance coefficient λ, which relates the resistance force Fr with the platform velocity v,

Fr = −λv,

has different values for different directions of platform motion:

λ =
{
λ+, v > 0,
λ−, v < 0.

In addition to the resistance force, the platform of mass M experiences the action of the gravity force Mg and
the force Fm−M exerted by the unbalanced working body of mass m (see Fig. 1). The equation of motion for the
platform is

M
d2y

dt2
= Mg + Fm−M + Fr. (1)

The working body experiences only the action of the gravity force mg and by the force Fm−M due to the platform:

m
d2(y + ym)

dt2
= mg + FM−m (2)

(ym is the vector determining the position of the working body with respect to the platform). The position of
the platform with respect to the Earth surface is given by the vector y. Combining the equations of motion (1)
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Fig. 1. Vibrational motion in a gravity field: 1) platform; 2) unbalanced working body.

Fig. 2. Platform coordinate ζ versus time for various oscillation periods of the working body:
θ = 0.1 (1), 0.152 (2), and 0.3 (3), and θ →∞ (4).

and (2) and taking into account the relation FM−m + Fm−M = 0, for the case of forced harmonic oscillations
[ym = y0

m+a cos (2πt/T )] executed by a body of mass m, the equation of motion for the platform can be written as

d2ζ

dτ2
+
(1− δ

2
sign

(dζ
dτ

)
+

1 + δ

2

)dζ
dτ

+ η − 1
θ2

cos
2πτ
θ

= 0. (3)

Here η is the normalized gravity field: η = M3
0 g/(4π

2maλ2
+) and

ζ =
M0

4π2ma
y, δ =

λ−
λ+

, τ =
λ+

M0
t, θ =

λ+

M0
T, M0 = m+M.

In spite of the nonanalytical nature of the coefficient at the normalized velocity dζ/dτ in (3), the numerical
solution of this equation presents no difficulties. The solution of Eq. (3) for δ = 4 and η = 1 is exemplified in Fig. 2,
which shows three regimes of vibrational motion in a gravity field. For high oscillation frequencies of the working
body, the system can ascend over the surface (curve 1). Low frequencies correspond tp the downward motion of
the system in the gravity field (curve 3). The descent here is not free because of the resistance of the medium and
the influence of the oscillating working body. For comparison, Fig. 2 shows the normalized coordinate ζ versus
time for zero oscillating frequency, i.e., for the case in which the working body does not vibrate (curve 4). There
exists a critical regime of vibrational motion, in which the center of mass remains stationary over the Earth surface
(curve 2). The main objective of the present work is to give a description of this regime.

Critical Regime of Vibrational Motion. The critical regime separates two regimes of vibrational motion.
The ascent of the system in the gravity field is characterized by a positive value of mean velocity 〈v〉 in vibrational
motion of this type. Conversely, negative values of mean velocity 〈v〉 correspond to downward motion of the platform.
Hence, to establish the conditions for the critical regime of vibrational motion in the gravity field, it suffices to find
the conditions under which the mean velocity is zero. The following specific feature in calculating this parameter is
worth noting: if the value of η is high, then the mean normalized velocity 〈ϑ〉 = M2

0 〈v〉/(4π2maλ+) vanishes only
at short dimensionless oscillation periods θ. In turn, the latter means that setting a fixed motion-stabilization time
interval after which the mean (averaged over a period) velocity of vibrational motion is calculated [1] is inadmissible.
The time required for the motion to become stable should be considered as a calculation parameter to be found
from the condition that the mean velocity is independent of the value of this parameter.
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Fig. 3. Critical dimensionless oscillation period θf versus the parameter of asymmetry δ.

Figure 3 shows the dimensionless oscillation period θf in the critical regime as a function of η and δ. Actually,
these data were obtained by numerically solving the equation

〈ϑ〉(η, δ, θf ) = 0 (4)

for various values of η and δ. To differentiate between the values of the dimensionless period in the critical regime and
the values of the parameter θ for upward and downward motions of the system, we introduced a new parameter θf .
As one would expect, if the total mass of the system is small, then the critical regime of vibrational motion starts
already at δ ≈ 1. If the resistance coefficient λ+ for the upward motion of the platform is much lower than the
resistance coefficient λ− for its downward motion, then the critical regime of vibrational displacement can occur at
rather low oscillating frequencies of the unbalanced working body. Finally, the critical regime of vibrational motion
of a heavy system (high values of η) emerges only at sufficiently high oscillating frequencies or, in other words, at
low θf .

It should be noted that the data of Fig. 3 are of low practical significance. A convenient way to represent
experimental and theoretical results is provided by the self-similar approach [1, 2] based on the symmetry of the
horizontal vibrational motion with simultaneous substitution of λ+ and λ−, respectively, for λ− and λ+. If the
system moves vertically (i.e., in a gravity field), then this symmetry is violated. The rule of transformation remains
unchanged only for the dimensionless period θf . This rule implies that the universal variable for the critical vibra-
tion period has the form θδf = θf/(1 + 1/δ). To write the corresponding variable for the normalized gravity force of
the whole system η, it is necessary to take into account that, following the simultaneous replacement λ+ ↔ λ−, the
equation of motion (3) retains its form only if the quantity η also changes its sign. At the same time, the value of η
quadratically depends on the resistance coefficient. This means that the transformation of the squared resistance
coefficient, λ+, rather than that of the resistance coefficient λ2

+ itself, should be antisymmetric. The antisym-
metric transformation of velocity of vibrational motion in the horizontal direction corresponds to the replacement
λ+ → λ+λ−(λ− − λ+)/(λ− + λ+)2 [2]. The transformation of the normalized gravity field should correspond to
an analogous replacement, since the critical regime of vibrational motion in the first-order approximation can be
represented as superposition of two motions: the downward motion of the system in the gravity field with zero
oscillation frequency and vibrational counter-displacement with η = 0. The only replacement that suits this model
and preserves the dimensions of the resistance coefficient of the medium has the form

λ2
+ → λ+λ−(λ− − λ+)/(λ− + λ+).

Then, the normalized gravity force can be written as the variable

ηδ = η(δ + 1)/(δ(δ − 1)),

which depends, as it could be expected, only on the dimensionless oscillation period θδf = θf/(1 + 1/δ) in the
critical regime of vibrational motion.
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Fig. 4. Self-similar dependence of the critical oscillation period θδf (ηδ): the points refer to the
solution of Eq. (4) for 1.1 6 δ 6 10 and 0.1 6 η 6 10; the curve is calculated by formula (5).

The above-mentioned approach can be used to approximately describe the calculation data plotted in Fig. 4
as the dependence θδf (ηδ). Here, two important circumstances are worth noting. First, for the normalized gravity
force changed by more than two orders of magnitude and for the asymmetry parameter of the system changed more
than tenfold, the critical dimensionless oscillation period is given by the simple relation

θδf ≈ 1/(20ηδ), (5)

which can be written as

Tf ≈ π2ma(λ− − λ+)/(5M2
0 g).

Second, the above-described approach, based on the property of symmetry, proved to be valid not only for long
dimensionless periods and high parameters of asymmetry. The latter seems to be caused by the general behavior
of dependence (5), which, actually, leads to the fact that the self-similar representation is not unique.

If, in the absence of any oscillations of the unbalanced body, the maximum velocity of the downward motion
of the whole system in air with the resistance coefficient λ− is vm, then we have λ−vm = M0g. This means
that vibrational ascent of such a system in the gravity field can be obtained for oscillation periods shorter than
Tf = π2ma(1 − 1/δ)/(5M0vm). For the mass ratio m/M0 = 1/2, oscillation amplitude a = 1 m, parameter of
asymmetry δ = 2, and velocity vm = 1 m/sec, we have Tf ≈ 0.5 sec.
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